Pattern Recognition Exam on 2008-06-23

NO OPEN BOOK! GEEN OPEN BOEK! - It is not allowed to use the course book(s) or any other (printed, written or electronic) material during the exam.

Give sufficient explanations to demonstrate how you come to a given solution or answer!

The 'weight' of each problem is specified below by a number of points, e.g. (20 p).

1. Bayesian decision boundaries for normal distributions (20 points). Let us consider a two-category classification problem, with categories A and B with prior probabilities P_A and P_B . The class-conditional probability densities P_{xA} and P_{xB} are one-dimensional normal distributions:

$$p_{x|A} \sim N(\mu_A, \sigma_A^2), \qquad p_{x|B} \sim N(\mu_B, \sigma_B^2)$$

- a) Express analitically the position(s) of the optimal Bayesian decision boundary or boundaries in terms of P_A , μ_A , σ_A , P_B , μ_B , σ_B .
- b) Find the analytical conditions for having 0, 1, 2, or 3 decision boundaries. For each possible case, draw qualitative graphs of the posterior probability functions $P_A p_{x \mid A}$ and $P_B p_{x \mid B}$, which illustrate why the number of decision boundaries depends on the parameters P_A , μ_A , σ_A , P_B , μ_B , σ_B .
- c) Let us consider the sets of observations {-3,-2, -1, 0, 1} for category A and {2.5, 3.3, 4, 4.7, 5.5} for category B.
 - c1) Compute unbiased maximum likelihood estimations of μ_A , σ_A , μ_B , σ_B .
 - c2) How many decision boundaries are there for $P_A = P_B$ and what are their positions?

2. (20 p) Minimum error classification. Missing features.

Consider a two-dimensional, three-category pattern classification problem, with equal priors $P(\omega_1) = P(\omega_2) = P(\omega_3) = 1/3$. We define the 'disk distribution' $D(\mu,r)$ to be uniform inside a circular disk centered on μ and having radius r, and elsewhere 0. The class-conditional probabilities for the three categories are such disk distributions $D(\mu_i,r_i)$, i=1, 2, 3, with the following parameters:

$$\omega_1$$
: $\mu_1 = (3, 2)$, $r_1 = 2$; ω_2 : $\mu_2 = (4, 1)$, $r_2 = 1$; ω_3 : $\mu_3 = (5, 4)$, $r_3 = 3$.

- a) (4 points) Classify the points (6, 2) and (3, 3) with minimum probability of error.
- b) (16 points) Classify the point (*, 0.5), where * denotes a missing feature.

Hint: Draw the three disks and the points to be classified in a 2D feature space.

3. (10 p) k-means clustering.

Consider the application of the k-means clustering algorithm to the one-dimensional data set $D = \{0, 1, 5, 7, 8, 14, 16\}$ for k = 3 clusters.

- a) (3p) Start with the following three cluster means: $m_1(0) = 2$, $m_2(0) = 4$ and $m_3(0) = 10$. What are the values of the means at the next iteration?
- b) (5 p) What are the final cluster means after convergence of the algorithm?

- c) (2 p) For your final cluster means, to which cluster does the point x = 4 belong? To which cluster does x = 10 belong?
- **4. (20 p) Binary decision trees.** Consider the following multi-set S of two-feature patterns in a three-category problem. Each pattern is defined by a pair of features (f_1,f_2) where f_1 can take the values A or B and f_2 can take the values C or D. Each pattern is labeled by a category label w_1 , w_2 or w_3 . The labeled patterns in the multi-set S are:

 $S = \{Patterns with label w_1: (A,C), (A,C), (A,C), (A,C);$

Patterns with label w₂: (A,D), (B,C), (B,C), (A,D), (B,C), (A,D), (B,C);

Patterns with label w₃: (B,D), (B,D), (B,D), (B,D)}

a) Compute the misclassification impurity of S.

b) Split S in two multi-subsets L and R using the following rule and compute the impurity drop achieved by this split:

Q1: "Put a pattern in L if $f_1 = A$, otherwise put it in R."

- c) Split S in two multi-subsets L and R using the following rule and compute the impurity drop achieved by this split.:
- Q2: "Put a pattern in L if $(f_1 = A \text{ AND } f_2 = D) \text{ OR } (f_1 = B \text{ AND } f_2 = C)$, else put it in R."
- d) Which of the two rules Q1 and Q2 would you use for building a decision tree? Why?
- e) Continue to grow your tree fully. Show the final tree and all queries.

5. (5p) Parzen windows.

Explain, using a simple example, the density estimation with Parzen windows. Under which conditions does this method give reliable results?

- **6.** (5 p) Present shortly the fuzzy k-means algorithm. What are the differences between k-means and fuzzy k-means?
- 7. (20 p) Hierarchical clustering. Consider the following set of binary patterns:

p₁=(1,1,1,1); p₂=(1,1,0,0); p₃=(1,0,1,0); p₄=(1,1,0,1); p₅=(1,1,1,0); p₆=(1,0,0,0); p₇=(0,1,0,1); p₈=(1,0,1,1).

4a) Using the Tanimoto similarity, build a dendrogram and a Venn diagram for this set. The similarity between two sub-clusters is defined as the Tanimoto similarity of a pair of patterns, one pattern from one sub-cluster and the other from the other sub-cluster, for the pair for which a maximum similarity is reached. (A single pattern can also be considered as a sub-cluster.)

4b) What is the distance implied by this hierarchical clustering for the following pairs of patterns: (p_6,p_7) , (p_2,p_4) , (p_4,p_5) . (The dissimilarity $\delta(p,q)$ between two patterns p and q is defined as $\delta(p,q)=1$ -s(p,q) where s(p,q) is their similarity.)

Reminder: Tanimoto similarity s(p,q) between two binary patterns p and q is defined as the ratio of the number of 1-bits that p and q have in common (p,q) and the number of bit positions in which either p or q has a 1-bit (p,p+q,q-p,q): s(p,q) = p,q/(p,p+q,q-p,q).